Diazotrophy and diversity of benthic cyanobacteria in tropical coastal zones
نویسنده
چکیده
Discoveries in recent years have disclosed the importance of marine cyanobacteria in the context of primary production and global nitrogen cycling. It is hypothesized here that microbial mats in tropical coastal habitats harbour a rich diversity of previously uncharacterized cyanobacteria and that benthic marine nitrogen fixation in coastal zones is substantial. A polyphasic approach was used to investigate cyanobacterial diversity in three tropical benthic marine habitats of different characters; an intertidal sand flat and a mangrove forest floor in the Indian Ocean, and a beach rock in the Pacific Ocean. In addition, nitrogenase activity was measured over diel cycles at all sites. The results revealed high cyanobacterial diversity, both morphologically and genetically. Substantial nitrogenase activity was observed, with highest rates at daytime where heterocystous species were present. However, the three habitats were dominated by non-heterocystous and unicellular genera such as Microcoleus, Lyngbya, Cyanothece and a large group of thin filamentous species, identified as members of the Pseudanabaenaceae family. In these consortia nocturnal nitrogenase activities were highest and nifH sequencing also revealed presence of noncyanobacterial potential diazotrophs. A conclusive phylogenetic analysis of partial nifH sequences from the three sites and sequences from geographically distant microbial mats revealed new clusters of benthic potentially nitrogen-fixing cyanobacteria. Further, the non-heterocystous cyanobacterium Lyngbya majuscula was subjected to a physiological characterization to gain insights into regulatory aspects of its nitrogen fixation. The data demonstrated that nitrogenase activity is restricted to darkness, which called upon a re-evaluation of its diazotrophic behaviour.
منابع مشابه
Biogeography of planktonic and benthic cyanobacteria in coastal waters of the Big Island, Hawai'i.
Cyanobacteria are biogeochemically significant constituents of coral reef ecosystems; however, little is known about biotic and abiotic factors influencing the abundance and composition of cyanobacterial communities in fringing coral reef waters. To understand the patterns of cyanobacterial biogeography in relation to coastal environmental factors, we examined the diversity of planktonic and be...
متن کاملNovel lineages of Prochlorococcus thrive within the oxygen minimum zone of the eastern tropical South Pacific.
The eastern tropical Pacific Ocean holds two of the main oceanic oxygen minimum zones of the global ocean. The presence of an oxygen-depleted layer at intermediate depths, which also impinges on the seafloor and in some cases the euphotic zone, plays a significant role in structuring both pelagic and benthic communities, and also in the vertical partitioning of microbial assemblages. Here, we a...
متن کاملRegional variations in the diversity and predicted metabolic potential of benthic prokaryotes in coastal northern Zhejiang, East China Sea
Knowledge about the drivers of benthic prokaryotic diversity and metabolic potential in interconnected coastal sediments at regional scales is limited. We collected surface sediments across six zones covering ~200 km in coastal northern Zhejiang, East China Sea and combined 16 S rRNA gene sequencing, community-level metabolic prediction, and sediment physicochemical measurements to investigate ...
متن کاملTropical Estuarine Macrobenthic Communities Are Structured by Turnover Rather than Nestedness
Turnover (i.e., species substitution) and nestedness (i.e., subsets of species from more diverse locations), the two main mechanisms used to explain the beta diversity of biological communities, have different implications for biodiversity conservation. To better understand how these mechanisms contribute to beta diversity, we tested the following hypotheses: (i) greater dissimilarity in commun...
متن کاملPhotosynthetic Versatility in the Genome of Geitlerinema sp. PCC 9228 (Formerly Oscillatoria limnetica ‘Solar Lake’), a Model Anoxygenic Photosynthetic Cyanobacterium
Anoxygenic cyanobacteria that use sulfide as the electron donor for photosynthesis are a potentially influential but poorly constrained force on Earth's biogeochemistry. Their versatile metabolism may have boosted primary production and nitrogen cycling in euxinic coastal margins in the Proterozoic. In addition, they represent a biological mechanism for limiting the accumulation of atmospheric ...
متن کامل